Supporting secondary research in early drug discovery process through a Natural Language Processing based system

Author:

Popa Alina1

Affiliation:

1. The Bucharest University of Economic Studies , Bucharest , Romania

Abstract

Abstract Last decades were characterised by a constant decline in the productivity of research and development activities of pharmaceutical companies. This is due to the fact that the drug discovery process contains an intrinsic risk that should be managed efficiently. Within this process, the early phase projects could be streamlined by doing more secondary research. These activities would involve the integration of chemical and biological knowledge from scientific literature in order to extract an overview and the evolution of a certain research area. This would then help refine the research and development operations. Considering the vast amount of pharmaceutical studies publications, it is not easy to identify the important information. For this task, a series of projects leveraged the advantages of the open pharmacological space through state-of-the-art technologies. The most popular are Knowledge Graphs methods. Although extremely useful, this technology requires increased investments of time and human resources. An alternative would be to develop a system that uses Natural Language Processing blocks. Still, there is no defined framework and reusable code template for the use-case of compounds development. In this study, it is presented the design and development of a system that uses Dynamic Topic Modelling and Named Entity Recognition modules in order to extract meaningful information from a large volume of unstructured texts. Moreover, the dynamic character of the topic modelling technique allows to analyse the evolution of different subject areas over time. In order to validate the system, a collection of articles from the Pharmaceutical Research Journal was used. Our results show that the system is able to identify the main research areas in the last 20 years, namely crystalline and amorphous systems, insulin resistance, paracellular permeability. Additionally, the evolution of the subjects is a highly valuable resource and should be used to get an in-depth understanding about the shifts that happened in a specific domain. However, a limitation of this system is that it cannot detect association between two concepts or entities if they are not involved in the same document.

Publisher

Walter de Gruyter GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Identification of chemical entities from prescribed drugs for ovarian cancer by text mining of medical records;2022 International Conference on Decision Aid Sciences and Applications (DASA);2022-03-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3