Author:
Ciftci Hakan,Hall Richard,Saad Nasser
Abstract
AbstractThe asymptotic iteration method is used to find exact and approximate solutions of Schrödinger’s equation for a number of one-dimensional trigonometric potentials (sine-squared, double-cosine, tangent-squared, and complex cotangent). Analytic and approximate solutions are obtained by first using a coordinate transformation to reduce the Schrödinger equation to a second-order differential equation with an appropriate form. The asymptotic iteration method is also employed indirectly to obtain the terms in perturbation expansions, both for the energies and for the corresponding eigenfunctions.
Subject
General Physics and Astronomy
Reference17 articles.
1. T. Bakarat, J. Phys. A-Math. Gen. 39, 823 (2006)
2. H. Ciftci, R.L. Hall, N. Saad, J. Phys. A-Math. Gen. 36, 11807 (2003)
3. H. Ciftci, R.L. Hall, N. Saad, J. Phys. A-Math. Gen. 38, 1147 (2005)
4. B. Champion, R.L. Hall, N. Saad, Int. J. Mod. Phys. A 23, 1405 (2008)
5. H. Ciftci, R.L. Hall, N. Saad, J. Phys. A-Math. Gen. 39, 2338 (2005)
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献