Abstract
AbstractWe construct Darboux operators for linear, multi-component partial differential equations of first order. The number of variables and the dimension of the matrix coefficients in our equations are arbitrary. The Darboux operator and the transformed equation are worked out explicitly. We present an application of our formalism to the (1+2)-dimensional Weyl equation.
Subject
General Physics and Astronomy
Reference15 articles.
1. G. Darboux, Comptes Rendus Acad. Sci. Paris 94, 1456 (1882)
2. C. Gu, H. Hu, Z. Zhou, Darboux transformations in integrable systems, Mathematical Physics Studies 26 (Springer, Dordrecht, The Netherlands, 2005)
3. V.B. Matveev, M.A. Salle, Darboux transformations and solitons (Springer, Berlin, 1991)
4. V.G. Bagrov, B.F. Samsonov, Phys. Lett. A 210, 60 (1996)
5. F. Cooper, A. Khare, U. Sukhatme, Phys. Rep. 251, 267 (1995)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献