Conditions governing the generalisation of threshold bound states by N attractive delta potentials in one and three dimensions

Author:

Dharani Marappan,Sahu Basudeb,Shastry Chakrakodi

Abstract

AbstractThis paper proves that for N attractive delta function potentials the number of bound states (Nb) satisfies 1 ≤ N b ≤ N in one dimension (1D), and is 0 ≤ N b ≤ N in three dimensions (3D). Algebraic equations are obtained to evaluate the bound states generated by N attractive delta potentials. In particular, in the case of N attractive delta function potentials having same separation a between adjacent wells and having the same strength λV, the parameter g=λVa governs the number of bound states. For a given N in the range 1–7, both in 1D and 3D cases the numerical values of gn, where n=1,2,..N are obtained. When g=gn, Nb ≤ n where Nb includes one threshold energy bound state. Furthermore, gn are the roots of the Nth order polynomial equations with integer coefficients. Based on our numerical calculations up to N=40, even when N becomes large, 0 ≤ g n ≤ 4 and $\frac{{\Sigma g_n }} {N} \simeq 2 $ and this result is expected to be generally valid. Thus, for g > 4 there will be no threshold or zero energy bound state, and if g≈ 2 for a given large N, the number of bound states will be approximately N/2. The empirical formula gn = 4/[1+exp((N 0 − n)/β)] gives a good description of the variation of gn as a function of n. This formula is useful in estimating the number of bound states for any N and g both in 1D and 3D cases.

Publisher

Walter de Gruyter GmbH

Subject

General Physics and Astronomy

Reference16 articles.

1. C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1996)

2. K. Gottfried, T.-M. Yan, Quantum Mechanics: Fundamental (Springer-Verlag, New York, 2003)

3. D. J. Griffiths, Introduction to Quantum mechanics (Pearson Education, 2005)

4. S. H. Patil, A. S. Roy, Physica A 253, 517 (1998)

5. B. Sahu, B. Sahu, Phys. Lett. A 373, 4033 (2009)

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3