Author:
Wilk Grzegorz,Włodarczyk Zbigniew
Abstract
AbstractWe provide an update of the overview of imprints of Tsallis nonextensive statistics seen in a multiparticle production processes. They reveal an ubiquitous presence of power law distributions of different variables characterized by the nonextensivity parameter q > 1. In nuclear collisions one additionally observes a q-dependence of the multiplicity fluctuations reflecting the finiteness of the hadronizing source. We present sum rules connecting parameters q obtained from an analysis of different observables, which allows us to combine different kinds of fluctuations seen in the data and analyze an ensemble in which the energy (E), temperature (T) and multiplicity (N) can all fluctuate. This results in a generalization of the so called Lindhard’s thermodynamic uncertainty relation. Finally, based on the example of nucleus-nucleus collisions (treated as a quasi-superposition of nucleon-nucleon collisions) we demonstrate that, for the standard Tsallis entropy with degree of nonextensivity q < 1, the corresponding standard Tsallis distribution is described by q′ = 2 − q > 1.
Subject
General Physics and Astronomy
Reference58 articles.
1. M. Gaździcki, M. Gorenstein, P. Seyboth, Acta Phys. Pol. B 42, 307 (2011)
2. G. Wilk, Z. Włodarczyk, Eur. Phys. J. A 40, 299 (2009)
3. C. Tsallis, J. Stat. Phys. 52, 479 (1988)
4. C. Tsallis, Eur. Phys. J. A 40, 257 (2009)
5. C. Tsallis, Introduction to nonextensive statistical mechanics (Springer, New York, 2009)
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献