Diffraction microtomography with sample rotation: influence of a missing apple core in the recorded frequency space

Author:

Vertu Stanislas,Delaunay Jean-Jacques,Yamada Ichiro,Haeberlé Olivier

Abstract

AbstractDiffraction microtomography in coherent light is foreseen as a promising technique to image transparent living samples in three dimensions without staining. Contrary to conventional microscopy with incoherent light, which gives morphological information only, diffraction microtomography makes it possible to obtain the complex optical refractive index of the observed sample by mapping a three-dimensional support in the spatial frequency domain. The technique can be implemented in two configurations, namely, by varying the sample illumination with a fixed sample or by rotating the sample using a fixed illumination. In the literature, only the former method was described in detail. In this report, we precisely derive the three-dimensional frequency support that can be mapped by the sample rotation configuration. We found that, within the first-order Born approximation, the volume of the frequency domain that can be mapped exhibits a missing part, the shape of which resembles that of an apple core. The projection of the diffracted waves in the frequency space onto the set of sphere caps covered by the sample rotation does not allow for a complete mapping of the frequency along the axis of rotation due to the finite radius of the sphere caps. We present simulations of the effects of this missing information on the reconstruction of ideal objects.

Publisher

Walter de Gruyter GmbH

Subject

General Physics and Astronomy

Reference18 articles.

1. E. Wolf, Opt. Commun. 1, 153 (1969)

2. R. Da̋ndliker, K. Weiss, Opt. Commun. 1, 323 (1970)

3. V. Lauer, J. Microsc. 205, 165 (2002)

4. S. Kawata, O. Nakamura, S. Minami, J. Opt. Soc. Am. A 4, 292 (1987)

5. O. Haeberlé, A. Santenac, H. Giovaninni, In: A.M. Vilas, J.D. Alvarez (Eds.), Modern Research and Educational Topics in Microscopy 3, Vol. II (Formatex, Badajoz, Spain, 2007) 956

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3