Author:
Ansari Alireza,Sheikhani Amirhossein,Kordrostami Sohrab
Abstract
AbstractIn this article, we derive the coefficient set {H m(x,y)}m=1∞ using the generating function ext+yϕ(t). When the complex function ϕ(t) is entire, using the inverse Mellin transform, and when ϕ(t) has singular points, using the inverse Laplace transform, the coefficient set is obtained. Also, bi-orthogonality of this set with its associated functions and its applications in the explicit solutions of partial fractional differential equations is discussed.
Subject
General Physics and Astronomy
Reference11 articles.
1. G. Dattoli, H.M. Srivastava, K. Zhukovsky, Appl. Math. Comput. 184, 979 (2007)
2. G. Dattoli, P.E. Ricci, I. Khomasuridze, Int. Transf. Special Funct. 15, 309 (2004)
3. G. Dattoli, P. E. Ricci, C. Cesarano, Appl. Anal.: Inter. J. 80, 379 (2001)
4. H.M. Srivastava, H.L. Manocha, A Treatise On Generating Functions (Wiley, NewYork, 1984)
5. H.W. Gould, A.T. Hopper, Duke Math. J. 29, 51 (1962)
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献