Pulsed laser treatment of gold and black gold thin films fabricated by thermal evaporation

Author:

Novotný Michal,Fitl Přemysl,Sytchkova Anna,Bulíř Jiří,Lanaok Jan,Pokorna Petr,Najdek David,Boan Jia

Abstract

AbstractThe effect of pulsed laser treatment of metal, and metal blacks, was studied. Gold and black gold thin films were fabricated by thermal evaporation of gold in a vacuum and nitrogen atmosphere respectively. Black gold films were grown in a nitrogen atmosphere at pressures of 200 Pa and 300 Pa. UV pulsed laser radiation (λ = 266 nm, τ = 4 ns), with fluence ranging from 1 mJ·cm−2 to 250 mJ·cm−2 was used for the film treatment in a vacuum and nitrogen atmosphere. The nitrogen pressure was varied up to 100 kPa. Surface structure modifications were analyzed by optical microscopy, atomic force microscopy (AFM) and scanning electron microscopy (SEM). Energy dispersive X-ray spectroscopy (EDX) was used for chemical characterization of the samples. A significant dependence of the film optical and structural properties on laser treatment conditions (laser fluence, ambient pressure and number of applied pulses) was found. The threshold for observable damage and initiation of changes of morphology for gold and black gold surfaces was determined. Distinct modifications were observed for fluences greater than 106 mJ·cm−2 and 3.5 mJ·cm−2 for the gold and black gold films respectively. Absorbtivity of the black gold film is found to decrease with an increase in the number of laser pulses. Microstructural and nanostructural modifications after laser treatment of the black gold film were observed. EDX analysis revealed that no impurities were introduced into the samples during both the deposition and laser treatment.

Publisher

Walter de Gruyter GmbH

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3