Affiliation:
1. Dept. of Math., Fac. of Sci. Dhar-El Mahraz , Sidi Mohamed Ben Abdellah University , Atlas-Fez , Morocco
Abstract
Abstract
Let R be a principal ideal domain with quotient field K, and L = K(α), where α is a root of a monic irreducible polynomial F (x) ∈ R[x]. Let ℤ
L
be the integral closure of R in L. In this paper, for every prime p of R, we give a new efficient version of Dedekind’s criterion in R, i.e., necessary and sufficient conditions on F (x) to have p not dividing the index [ℤ
L
: R[α]], for every prime p of R. Some computational examples are given for R = ℤ.
Reference10 articles.
1. [1] AHMAD, S.—NAKAHARA, T.—HUSNINE, S. M.: Power integral bases for certain pure sextic fields, Int. J. Number Theory 10 (2014), no. 8 2257–2265.
2. [2] MOTODA, Y.—NAKAHARA, T.—SHAH, S. I. A.: On a problem of Hasse, J. Number Theory 96 (2002), 326–334.10.1006/jnth.2002.2805
3. [3] HAMEED, A.—NAKAHARA, T.—HUSNINE, S. M.—AHMAD, S.: On existence of canonical number system in certain classes of pure algebraic number fields, J. Prime Res. Math. 7 (2011), 19–24.
4. [4] COHEN, D.—MOVAHHEDI, A.—SALINIER, A.:, Factorization over local fields and the irreducibility of generalized difference polynomials,Mathematika 47 (2000), no. 1–2, 173–196.
5. [5] COHEN, H.: A Course in Computational Algebraic Number Theory. In: Graduate Texts in Mathematics, Vol. 138, Springer-Verlag, Berlin, 1993.10.1007/978-3-662-02945-9