Affiliation:
1. FEI STU , Bratislava , Slovakia
Abstract
Abstract
We deal with an optimal control problem governed by a nonlinear hyperbolic initial-boundary value problem describing the perpendicular vibrations of a simply supported anisotropic viscoelastic plate against a rigid obstacle. A variable thickness of a plate plays the role of a control variable. We verify the existence of an optimal thickness function.
Reference10 articles.
1. [1] BOCK, I.—JARUŠEK, J.: Unilateral dynamic contact of viscoelastic von Kármán plates, Adv. Math. Sci. Appl. 16 (2006), 175–187.
2. [2] ______Dynamic contact problem for a bridge modeled by a viscoelastic von Kármán system, Z. Angew. Math. Phys. 61 (2010), 865–876.10.1007/s00033-010-0066-3
3. [3] BOCK, I.—KEČKEMÉTYOVÁ, M.: An optimal design with respect to a variable thickness of a viscoelastic beam in a dynamic boundary contact, Tatra Mt. Math. Publ. 48 (2011), 15–24.
4. [4] ______ Regularized optimal control problem for a beam vibrating against an elastic foundation, Tatra Mt. Math. Publ. 63 (2015), 53–71.10.1515/tmmp-2015-0020
5. [5] CHRISTENSEN, R. M.: Theory of Viscoelasticity. Academic Press, New York, 1982.10.1016/B978-0-12-174252-2.50012-0
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献