The Effect of Nitrogen on the Structural and Electronic Properties of Graphene Sheet using Density Functional Theory

Author:

Jabr Hakima Salman1,Ali Rajaa Hussein Abd2

Affiliation:

1. Babylon University , College of Science , Physics Department , Babylon , Iraq

2. University of Kerbala , Science College , Physics Department , Karbala , Iraq

Abstract

Abstract The present research focuses on a theoretical study of structural and electronic properties of pure graphene sheet and then adding different number of N2 atoms. The calculations are carried out using the density functional theory (DFT) with hybrid functional B3LYP/6-31G level to investigate the proposed structures. Gauss View 5.0.8 program is used to design the structures of pure and doped graphene sheets. These structures are relaxed by employing the PM6 semi-empirical method with the hybrid functional B3LYPDFT at Gaussian 09 package. The results of the structural properties of the studied graphene sheets showed that good relaxation of the structures, the constant bonds values in the pure graphene sheets in the same ranges of the carbon rings structures. We calculate the total energy, High Occupied Molecular Orbital (HOMO) and Low Unoccupied Molecular Orbital (LUMO) energies and forbidden energy gap. The result of the total energy of that doping graphene sheets is result of the binding energy of each structure and indicates that these structures have relaxation, and the effect of adding N2 atoms in pure graphene sheet on the total energy of the molecule is effective. All doping graphene sheets have small forbidden energy gap, but it vibrates depending on the length and number of each sheet and the position of N2 atoms in the sheets.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3