Against the Flow of Time with Multi-Output Models

Author:

Jakubík Jozef1,Phuong Mary2,Chvosteková Martina1,Krakovská Anna1

Affiliation:

1. 1 Institute of Measurement Science, Slovak Academy of Sciences , Dúbravská cesta 9 , Bratislava , Slovakia

2. 2 IST Austria, Am Campus 1 , Klosterneuburg , Austria

Abstract

Abstract Recent work has paid close attention to the first principle of Granger causality, according to which cause precedes effect. In this context, the question may arise whether the detected direction of causality also reverses after the time reversal of unidirectionally coupled data. Recently, it has been shown that for unidirectionally causally connected autoregressive (AR) processes XY, after time reversal of data, the opposite causal direction YX is indeed detected, although typically as part of the bidirectional X ↔ Y link. As we argue here, the answer is different when the measured data are not from AR processes but from linked deterministic systems. When the goal is the usual forward data analysis, cross-mapping-like approaches correctly detect XY, while Granger causality-like approaches, which should not be used for deterministic time series, detect causal independence XY . The results of backward causal analysis depend on the predictability of the reversed data. Unlike AR processes, observables from deterministic dynamical systems, even complex nonlinear ones, can be predicted well forward, while backward predictions can be difficult (notably when the time reversal of a function leads to one-to-many relations). To address this problem, we propose an approach based on models that provide multiple candidate predictions for the target, combined with a loss function that consideres only the best candidate. The resulting good forward and backward predictability supports the view that unidirectionally causally linked deterministic dynamical systems XY can be expected to detect the same link both before and after time reversal.

Publisher

Walter de Gruyter GmbH

Subject

Instrumentation,Biomedical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3