Potential predictive biomarker for diabetic peripheral neuropathy: serum neuron-specific enolase

Author:

Majeed Islam Fareed1ORCID,Baban Rayah Sulaiman1,Salman Isam Noori2ORCID,AlRufaie Mohauman M.3ORCID

Affiliation:

1. 1 Department of Chemistry and Biochemistry, College of Medicine , Al-Nahrain University , Baghdad , Iraq

2. 2 The National Diabetes Center , Mustansiriyah University , Baghdad , Iraq

3. 3 Chemistry Department, College of Science , Kufa University , Najaf , Iraq

Abstract

Abstract The early stages of diabetic peripheral neuropathy (DPN) are symptomless. A reliable dependable and sensitive biomarker is needed for the purpose of early identification of diabetic peripheral neuropathy. The main objective of the study was to evaluate the accuracy of serum neuron-specific enolase (NSE) as a biomarker for early identification of diabetic peripheral neuropathy. Patient samples were collected from the National Diabetes Center, Mustansiriyah University; a case control study was done from April 2022 to November 2022, in Baghdad, Iraq. One hundred sixty individuals between 30 to 60 years-old were included. Participants were divided into three groups: group one included 40 type 2 diabetic patients with peripheral neuropathy, group two consisted of 40 type 2 diabetic patients without peripheral neuropathy and group three included 80 apparently in good health as the control. Toronto Clinical Neuropathy Scoring System (TCSS) was used for clinical evaluation of peripheral neuropathy. Glycated hemoglobin (HbA1c) was measured by the CLOVER A1c system. In addition, serum NSE levels were measured by Enzyme Linked Immunosorbent Assay (ELISA) technique. Age, sex, and other standard variables were used as a basis for comparisons between groups. Statistically, diabetic patients with peripheral neuropathy demonstrated higher level of NSE (28.42±6.93 ng/ml) than did either diabetic patients without peripheral neuropathy (21.07±2.0 ng/ml) or controls (12.54±2.34 ng/ml) with a high degree of significance (p <0.001). In the context of Discrimination between DPN patients and diabetic patients without neuropathy, the area under curve for neuron-specific enolase was 0.812, 95% confidence interval [CI] = 0.716-0.909, p <0.001. Cut-off value of serum neuron-specific enolase was 22.53 ng/ml, sensitivity and specificity were 70% and 77%, respectively. In the context of discrimination between DPN and controls, the area under curve for neuron-specific enolase was 1.00, 95% confidence interval was 1.0-1.0, p <0.001. At a cut-off value of serum neuron-specific enolase = 18.3 ng/ml, both the sensitivity and specificity were 100%. Neuron-specific enolase could potentially be used as a biomarker to detect early diabetic peripheral neuropathy and prevent it from developing to an advanced state.

Publisher

Walter de Gruyter GmbH

Subject

Pharmacology,Molecular Biology,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3