The role of the L-arginine-NO-cGMP pathway in the development of tolerance to mephedrone-induced hyperlocomotion in mice

Author:

Bielecka-Papierz Gabriela1,Poleszak Ewa2ORCID,Szopa Aleksandra3ORCID,Listos Joanna4ORCID,Orzelska-Gorka Jolanta5ORCID,Jakobczuk Małgorzata5,Baluk Kamila5,Talarek Sylwia5,Serefko Anna3ORCID

Affiliation:

1. 1 Chair and Department of Applied and Social Pharmacy , Medical University of Lublin , Poland

2. 2 Laboratory of Preclinical Testing, Chair and Department of Applied and Social Pharmacy , Medical University of Lublin , Poland

3. 3 Department of Clinical Pharmacy and Pharmaceutical Care , Medical University of Lublin , Poland

4. 4 Department of Pharmacology and Pharmacodynamics , Medical University of Lublin , Poland

5. 5 Department of Pharmacology and Pharmacodynamics , Medical University of Lublin , Poland

Abstract

Abstract The tendency of a psychostimulant to increase locomotion in rodents is considered to be associated with its addictive properties. Mephedrone, one of the most popular psychoactive substances used recreationally, is known to enhance locomotor activity in mice, but little is known about the potential development of tolerance to its central effects. In the present study, we decided to evaluate the possible involvement of the L-arginine-NO-cGMP pathway in the development of tolerance to mephedrone-induced hyperlocomotion. Experiments were performed on adult male Albino Swiss mice, and the locomotor activity was measured automatically. Our work indicated that a 5-day administration of L-NAME (25 or 50 mg/kg/day), methylene blue (5 or 10 mg/kg/day), and L-arginine hydrochloride (i.e., 250 mg/kg/day) prevented the development of tolerance to mephedrone-induced (5 mg/kg/day) hyperlocomotion, whereas treatment with L-arginine hydrochloride at a dose of 125 mg/kg/day potentiated the development of tolerance to this central effect of mephedrone. Summarizing, our data revealed that the L-arginine-NO-cGMP pathway contributes to the development of tolerance to mephedrone’s central effects since inhibition of this signalling via blocking of NOS or NO-stimulated sGC prevented the development of tolerance to mephedrone-induced hyperlocomotion. As for cGMP-regulated phosphodiesterases, most probably they are not involved in these mechanisms.

Publisher

Walter de Gruyter GmbH

Subject

Pharmacology,Molecular Biology,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3