Dimension Distortion by Sobolev Mappings in Foliated Metric Spaces

Author:

Balogh Zoltán M.,Tyson Jeremy T.,Wildrick Kevin

Abstract

Abstract We quantify the extent to which a supercritical Sobolev mapping can increase the dimension of subsets of its domain, in the setting of metric measure spaces supporting a Poincaré inequality. We show that the set of mappings that distort the dimensions of sets by the maximum possible amount is a prevalent subset of the relevant function space. For foliations of a metric space X defined by a David–Semmes regular mapping Π : X → W, we quantitatively estimate, in terms of Hausdorff dimension in W, the size of the set of leaves of the foliation that are mapped onto sets of higher dimension. We discuss key examples of such foliations, including foliations of the Heisenberg group by left and right cosets of horizontal subgroups.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Geometry and Topology,Analysis

Reference29 articles.

1. dimension quasiconformal mappings;Gehring;London Math Soc,1973

2. Projection and slicing theorems in Heisenberg groups;Balogh;Math,2012

3. classes of Banach space - valued functions and quasiconformal mappings;Heinonen;Anal Math,2001

4. Measure theoretic zero sets in infinite dimensional spaces and applications to differentiability of Lipschitz mappings du Deuxième Colloque d Analyse Fonctionnelle de Bordeaux;Christensen;Math,1973

5. Regular mappings between dimensions;David;Mat,2000

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quasiconformal mappings that highly distort dimensions of many parallel lines;Annales Academiae Scientiarum Fennicae Mathematica;2017-02

2. Quasisymmetric dimension distortion of Ahlfors regular subsets of a metric space;Geometric and Functional Analysis;2016-04

3. Dimension distortion of images of sets under Sobolev mappings;Annales Academiae Scientiarum Fennicae Mathematica;2015-01

4. Grassmannian Frequency of Sobolev Dimension Distortion;Computational Methods and Function Theory;2014-03-27

5. Dimension of images of subspaces under mappings in Triebel-Lizorkin spaces;Mathematische Nachrichten;2013-11-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3