Stilbene derivatives inhibit the activity of the inner mitochondrial membrane chloride channels

Author:

Koszela-Piotrowska Izabela,Choma Katarzyna,Bednarczyk Piotr,Dołowy Krzysztof,Szewczyk Adam,Kunz Wolfram,Malekova Lubica,Kominkova Viera,Ondrias Karol

Abstract

AbstractIon channels selective for chloride ions are present in all biological membranes, where they regulate the cell volume or membrane potential. Various chloride channels from mitochondrial membranes have been described in recent years. The aim of our study was to characterize the effect of stilbene derivatives on single-chloride channel activity in the inner mitochondrial membrane. The measurements were performed after the reconstitution into a planar lipid bilayer of the inner mitochondrial membranes from rat skeletal muscle (SMM), rat brain (BM) and heart (HM) mitochondria. After incorporation in a symmetric 450/450 mM KCl solution (cis/trans), the chloride channels were recorded with a mean conductance of 155 ± 5 pS (rat skeletal muscle) and 120 ± 16 pS (rat brain). The conductances of the chloride channels from the rat heart mitochondria in 250/50 mM KCl (cis/trans) gradient solutions were within the 70–130 pS range. The chloride channels were inhibited by these two stilbene derivatives: 4,4′-diisothiocyanostilbene-2,2′-disulfonic acid (DIDS) and 4-acetamido-4′-isothiocyanostilbene-2,2′-disulfonic acid (SITS). The skeletal muscle mitochondrial chloride channel was blocked after the addition of 1 mM DIDS or SITS, whereas the brain mitochondrial channel was blocked by 300 μM DIDS or SITS. The chloride channel from the rat heart mitochondria was inhibited by 50–100 μM DIDS. The inhibitory effect of DIDS was irreversible. Our results confirm the presence of chloride channels sensitive to stilbene derivatives in the inner mitochondrial membrane from rat skeletal muscle, brain and heart cells.

Publisher

Walter de Gruyter GmbH

Subject

Cell Biology,Molecular Biology,Biochemistry

Reference37 articles.

1. Electrophysiological characterization of contact sites in brain mitochondria;Moran;Biol Chem,1990

2. The mitochondrial inner membrane anion channel Regulation by divalent cations and protons;Beavis;Biol Chem,1987

3. Molecular cloning and characterization of a mitogen - activated protein kinase - associated intracellular chloride channel http dx org;Qian;Biol Chem,1999

4. Further investigation on the high - conductance ion channel of the inner membrane of mitochondria http dx org;Sorgato;Bioenerg Biomembr,1989

5. Phosphate affects the distribution of flux control among the enzymes of oxidative phosphorylation in rat skeletal muscle mitochondria;Wiśniewski;Biol Chem,1993

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3