Inhibition of biogenic membrane flippase activity in reconstituted ER proteoliposomes in the presence of low cholesterol levels

Author:

Rajasekharan Archita,Gummadi Sathyanarayana

Abstract

AbstractBiogenic membranes or self-synthesizing membranes are the site of synthesis of new lipids such as the endoplasmic reticulum (ER) in eukaryotes. Newly synthesized phospholipids (PLs) at the cytosolic leaflet of ER need to be translocated to the lumen side for membrane biogenesis and this is facilitated by a special class of lipid translocators called biogenic membrane flippase. Even though ER is the major site of cholesterol synthesis, it contains very low amounts of cholesterol, since newly synthesized cholesterol in ER is rapidly transported to other organelles and is highly enriched in plasma membrane. Thus, only low levels of cholesterol are present at the biosynthetic compartment (ER), which results in loose packing of ER lipids. We hypothesize that the prevalence of cholesterol in biogenic membranes might affect the rapid flip-flop. To validate our hypothesis, detergent solubilized ER membranes from both bovine liver and spinach leaves were reconstituted into proteoliposomes with varying mol% of cholesterol. Our results show that (i) with increase in the cholesterol/PL ratio, the half-life time of PL translocation increased, suggesting that cholesterol affects the kinetics of flipping, (ii) flipping activity was completely inhibited in proteoliposomes reconstituted with 1 mol% cholesterol, and (iii) FRAP and DSC experiments revealed that 1 mol% cholesterol did not alter the bilayer properties significantly and that flippase activity inhibition is probably mediated by interaction of cholesterol with the protein.

Publisher

Walter de Gruyter GmbH

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3