Masked Sentence Model Based on BERT for Move Recognition in Medical Scientific Abstracts

Author:

Yu Gaihong12,Zhang Zhixiong123,Liu Huan12,Ding Liangping12

Affiliation:

1. National Science Library, Chinese Academy of Sciences , Beijing 100190 , China

2. University of Chinese Academy of Sciences , Beijing 100049 , China

3. Wuhan Library, Chinese Academy of Sciences , Wuhan 430071 , China

Abstract

Abstract Purpose Move recognition in scientific abstracts is an NLP task of classifying sentences of the abstracts into different types of language units. To improve the performance of move recognition in scientific abstracts, a novel model of move recognition is proposed that outperforms the BERT-based method. Design/methodology/approach Prevalent models based on BERT for sentence classification often classify sentences without considering the context of the sentences. In this paper, inspired by the BERT masked language model (MLM), we propose a novel model called the masked sentence model that integrates the content and contextual information of the sentences in move recognition. Experiments are conducted on the benchmark dataset PubMed 20K RCT in three steps. Then, we compare our model with HSLN-RNN, BERT-based and SciBERT using the same dataset. Findings Compared with the BERT-based and SciBERT models, the F1 score of our model outperforms them by 4.96% and 4.34%, respectively, which shows the feasibility and effectiveness of the novel model and the result of our model comes closest to the state-of-the-art results of HSLN-RNN at present. Research limitations The sequential features of move labels are not considered, which might be one of the reasons why HSLN-RNN has better performance. Our model is restricted to dealing with biomedical English literature because we use a dataset from PubMed, which is a typical biomedical database, to fine-tune our model. Practical implications The proposed model is better and simpler in identifying move structures in scientific abstracts and is worthy of text classification experiments for capturing contextual features of sentences. Originality/value T he study proposes a masked sentence model based on BERT that considers the contextual features of the sentences in abstracts in a new way. The performance of this classification model is significantly improved by rebuilding the input layer without changing the structure of neural networks.

Publisher

Walter de Gruyter GmbH

Reference23 articles.

1. Amini, I., Martinez, D., & Molla, D. (2012). Overview of the ALTA 2012 shared task. In Proceedings of the Australasian Language Technology Association Workshop 2012: ALTA 2012 (pp. 124–129). Dunedin, New Zealand.

2. Badie, K., Asadi, N., & Tayefeh Mahmoudi, M. (2018). Zone identification based on features with high semantic richness and combining results of separate classifiers. Journal of Information and Telecommunication, 2(4), 411–427.

3. Basili, R. & Pennacchiotti, M. (2010). Distributional lexical semantics: Toward uniform representation paradigms for advanced acquisition and processing tasks. Natural Language Engineering, 1(1), 1–12.

4. Beltagy, I., Lo, K., & Cohan, A. (2019). SciBERT: Pretrained contextualized embeddings for scientific text. arXiv:1903.10676v3.

5. Dasigi, P., Burns, G.A.P.C., Hovy, E., & Waard, A. (2017). Experiment segmentation in scientific discourse as clause-level structured prediction using recurrent neural networks. arXiv:1702.05398.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3