Improving Publication Pipeline with Automated Biological Entity Detection and Validation Service

Author:

Xu Weijia1,Gupta Amit1,Jaiswal Pankaj2,Taylor Crispin3,Lockhart Patti3,Regala Jennifer3

Affiliation:

1. Texas Advanced Computing Center, University of Texas , Austin , USA

2. Oregon State University, Corvallis , Oregon , USA

3. American Society of Plant Biologists, Rockville , Maryland , USA

Abstract

Abstract With the increasing amount of digital journal submissions, there is a need to deploy new scalable computational methods to improve information accessibilities. One common task is to identify useful information and named entity from text documents such as journal article submission. However, there are many technical challenges to limit applicability of the general methods and lack of general tools. In this paper, we present domain informational vocabulary extraction (DIVE) project, which aims to enrich digital publications through detection of entity and key informational words and by adding additional annotations. In a first of its kind to our knowledge, our system engages authors of the peer-reviewed articles and the journal publishers by integrating DIVE implementation in the manuscript proofing and publication process. The system implements multiple strategies for biological entity detection, including using regular expression rules, ontology, and a keyword dictionary. These extracted entities are then stored in a database and made accessible through an interactive web application for curation and evaluation by authors. Through the web interface, the authors can make additional annotations and corrections to the current results. The updates can then be used to improve the entity detection in subsequent processed articles in the future. We describe our framework and deployment in details. In a pilot program, we have deployed the first phase of development as a service integrated with the journals Plant Physiology and The Plant cell published by the American Society of Plant Biologists (ASPB). We present usage statistics to date since its production on April 2018. We compare automated recognition results from DIVE with results from author curation and show the service achieved on average 80% recall and 70% precision per article. In contrast, an existing biological entity extraction tool, a biomedical named entity recognizer (ABNER), can only achieve 47% recall and return a much larger candidate set.

Publisher

Walter de Gruyter GmbH

Subject

Geology,Ocean Engineering,Water Science and Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3