Kalman Filter Based Method for Fault Diagnosis of Analog Circuits

Author:

Li Xifeng,Xie Yongle,Bi Dongjie,Ao Yongcai

Abstract

Abstract This paper presents a Kalman filter based method for diagnosing both parametric and catastrophic faults in analog circuits. Two major innovations are presented, i.e., the Kalman filter based technique, which can significantly improve the efficiency of diagnosing a fault through an iterative structure, and the Shannon entropy to mitigate the influence of component tolerance. Both these concepts help to achieve higher performance and lower testing cost while maintaining the circuit.s functionality. Our simulations demonstrate that using the Kalman filter based technique leads to good results of fault detection and fault location of analog circuits. Meanwhile, the parasitics, as a result of enhancing accessibility by adding test points, are reduced to minimum, that is, the data used for diagnosis is directly obtained from the system primary output pins in our method. The simulations also show that decision boundaries among faulty circuits have small variations over a wide range of noise-immunity requirements. In addition, experimental results show that the proposed method is superior to the test method based on the subband decomposition combined with coherence function, arisen recently.

Publisher

Walter de Gruyter GmbH

Subject

Instrumentation,Control and Systems Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A dual mode self-test for a stand alone AES core;PLOS ONE;2021-12-23

2. Kalman Filter for Detecting Serial Arc Faults in a Domestic Electrical Network;2020 IEEE 66th Holm Conference on Electrical Contacts and Intensive Course (HLM);2020-09-30

3. Kalman filter and a fuzzy logic processor for series arcing fault detection in a home electrical network;International Journal of Electrical Power & Energy Systems;2019-05

4. A Novel Noise-assisted Prognostic Method for Linear Analog Circuits;Journal of Electronic Testing;2017-10

5. Estimation of UAV Position with Use of Smoothing Algorithms;Metrology and Measurement Systems;2017-03-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3