A Multi-Band Integrated Virtual Calibration-Inversion Method for Open Path FTIR Spectrometry

Author:

Cięszczyk Sławomir

Abstract

Abstract This paper addresses problems arising from in situ measurement of gas content and temperature. Such measurements can be considered indirect. Transmittance or natural radiation of a gas is measured directly. The latter method (spectral radiation measurement) is often called spectral remote sensing. Its primary uses are in astronomy and in the measurement of atmospheric composition. In industrial processes, in situ spectroscopic measurements in the plant are often made with an open path Fourier Transform Infrared (FTIR) spectrometer. The main difficulty in this approach is related to the calibration process, which often cannot be carried out in the manner used in the laboratory. Spectral information can be obtained from open path spectroscopic measurements using mathematical modeling, and by solving the inverse problem. Determination of gas content based on spectral measurements requires comparison of the measured and modeled spectra. This paper proposes a method for the simultaneous use of multiple lines to determine the gas content. The integrated absorptions of many spectral lines permits calculation of the average band absorption. An inverse model based on neural networks is used to determine gas content based on mid-infrared spectra at variable temperatures.

Publisher

Walter de Gruyter GmbH

Subject

Instrumentation,Control and Systems Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3