Interpretable Machine-Learning Approach in Estimating FDI Inflow: Visualization of ML Models with LIME and H2O

Author:

Singh Devesh1

Affiliation:

1. University of Kaposvár , Guba Sandor u. 40, Kaposvár 7400 , Hungary

Abstract

Abstract In advancement of interpretable machine learning (IML), this research proposes local interpretable model-agnostic explanations (LIME) as a new visualization technique in a novel informative way to analyze the foreign direct investment (FDI) inflow. This article examines the determinants of FDI inflow through IML with a supervised learning method to analyze the foreign investment determinants in Hungary by using an open-source artificial intelligence H2O platform. This author used three ML algorithms—general linear model (GML), gradient boosting machine (GBM), and random forest (RF) classifier—to analyze the FDI inflow from 2001 to 2018. The result of this study shows that in all three classifiers GBM performs better to analyze FDI inflow determinants. The variable value of production in a region is the most influenced determinant to the inflow of FDI in Hungarian regions. Explanatory visualizations are presented from the analyzed dataset, which leads to their use in decision-making.

Publisher

Walter de Gruyter GmbH

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advanced Threat Intelligence Forecasting using Machine Learning Algorithms;2023 IEEE International Conference on ICT in Business Industry & Government (ICTBIG);2023-12-08

2. Evaluation of Machine Learning on Smart Home Data for Prediction of Electrical Energy Consumption;2023 International Conference on Computer Science, Information Technology and Engineering (ICCoSITE);2023-02-16

3. Can a change in FDI accelerate GDP growth? Time-series and ANNs evidence on Malta;The Journal of Economic Asymmetries;2022-06

4. Forecasting Foreign Direct Investment Inflow to Egypt and Determinates: Using Machine Learning Algorithms and ARIMA Model;Journal of Advanced Transportation;2021-12-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3