Influence of nitrate supplementation on in-vitro methane emission, milk production, ruminal fermentation, and microbial methanotrophs in dairy cows fed at two forage levels

Author:

Sharifi Majid1ORCID,Taghizadeh Akbar1ORCID,Hosseinkhani Ali1ORCID,Palangi Valiollah2ORCID,Macit Muhlis2ORCID,Salem Abdelfattah Z. M.3ORCID,Elghndour Mona M.M.Y.3,Abachi Soheila4ORCID

Affiliation:

1. Department of Animal Science, Faculty of Agriculture , University of Tabriz , Tabriz , Iran

2. Department of Animal Science , Agricultural Faculty, Ataturk University , 25240 , Erzurum , Turkey

3. Faculty of Veterinary Medicine and Animal Science , Autonomous University of the State of Mexico , Toluca, State of Mexico , Mexico

4. Institute of Nutrition and Functional Foods (INAF) , Université Laval, Quebec, QC G1V 0A6 , Canada

Abstract

Abstract Modifying the chemical composition of a diet can be a good strategy for reducing methane emission in the rumen. However, this strategy can have adverse effects on the ruminal microbial flora. The aim of our study was to reduce methane without disturbing ruminal function by stimulating the growth and propagation of methanotrophs. In this study, we randomly divided twenty multiparous Holstein dairy cows into 4 groups in a 2×2 factorial design with two forage levels (40% and 60%) and two nitrate supplementation levels (3.5% and zero). We examined the effect of experimental diets on cow performance, ruminal fermentation, blood metabolites and changes of ruminal microbial flora throughout the experimental period (45-day). Additionally, in vitro methane emission was evaluated. Animals fed diet with 60% forage had greater dry matter intake (DMI) and milk fat content, but lower lactose and milk urea content compared with those fed 40% forage diet. Moreover, nitrate supplementation had no significant effect on DMI and milk yield. Furthermore, the interactions showed that nitrate reduces DMI and milk fat independently of forage levels. Our findings showed that nitrate can increase ammonia concentration, pH, nitrite, and acetate while reducing the total volatile fatty acids concentration, propionate, and butyrate in the rumen. With increasing nitrate, methane emission was considerably decreased possibly due to the stimulated growth of Fibrobacteria, Proteobacteria, type II Methanotrophs, and Methanoperedense nitroreducens, especially with high forage level. Overall, nitrate supplementation could potentially increase methane oxidizing microorganisms without adversely affecting cattle performance.

Publisher

Walter de Gruyter GmbH

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3