Effects of incubation time and method of cell cycle synchronization on collared peccary skin-derived fibroblast cell lines

Author:

Borges Alana Azevedo1,Luciano Maria Claudia dos Santos2,Nascimento Matheus Barbosa do1,de Oliveira Lira Gabriela Pereira1,de Cássia Evangelista de Oliveira Fátima2,Pessoa Claudia2,Pereira Alexsandra Fernandes1

Affiliation:

1. Laboratory of Animal Biotechnology , Universidade Federal Rural do Semi-Árido , Mossoro , RN , Brazil

2. Experimental Oncology Laboratory , Universidade Federal do Ceará , Fortaleza , CE , Brazil

Abstract

Abstract The success of cloning by somatic cell nuclear transfer depends on the efficiency of nuclear reprogramming, with the cycle stage of the donor cell playing a crucial role. Therefore, the aim was to evaluate three different approaches for cell cycle synchronization: (i) serum starvation (SS) for 1 to 4 days, (ii) contact inhibition (CI) for 1 to 3 days, and (iii) using cell cycle regulatory inhibitors (dimethyl sulfoxide, cycloheximide, cytochalasin B, or 6-dimethylaminopurine) for 1 and 2 days, in terms of their effects on synchronization in G0/G1 phases and viability of collared peccary skin fibroblasts. Flow cytometry analysis revealed that SS for 4 days (79.0% ± 1.6) and CI for 3 days (78.0% ± 1.4) increased the percentage of fibroblasts in G0/G1 compared to growing cells GC, (68.1% ± 8.6). However, SS for 3 and 4 days reduced the viability evaluated by differential staining (81.4% ± 0.03 and 81.6% ± 0.06) compared to growing cells (GC, 95.9% ± 0.06). CI did not affect the viability at any of the analyzed time intervals. No cell cycle inhibitors promoted synchronization in G0/G1. These results indicate that CI for 3 days was the most efficient method for cell cycle synchronization in peccary fibroblasts.

Publisher

Walter de Gruyter GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3