Affiliation:
1. Department of Clinical Sciences, Faculty of Veterinary Medicine , Shahid Chamran University of Ahvaz , Ahvaz , Iran
2. Member of Excellence Center of Warm Water Fish Health , Shahid Chamran University of Ahvaz , Ahvaz , Iran
Abstract
Abstract
The present study was designed to investigate the effects of dietary non-encapsulated and microencapsulated Lactobacillus delbrueckii subsp. bulgaricus on growth performance, intestinal enzymatic activities, antioxidant capacity and hepato-biochemical parameters of rainbow trout before or after exposure to lead via diet. Fingerling fish (16 ± 4 g) were divided into four groups: negative control (NC), positive control (PC), probiotic (PR) and encapsulated probiotic (EN-PR). During the pre-exposure period (days 0–45), fish in the NC and PC groups received the basal diet, whereas fish in the PR and EN-PR groups were fed with basal diet containing 108 CFU g−1 feed of non-encapsulated and microencapsulated probiotic, respectively. During the exposure period (days 46–66), the fish in the probiotic and PC groups were co-treated with 500 μg g−1 feed of lead nitrate. Blood, liver and gut samples were taken at days 0, 45, 52, 59 and 66. The results revealed that growth performance and intestinal enzymatic activities were significantly (P<0.05) improved in the probiotic groups compared to the NC group (day 45). Dietary exposure to lead resulted in the highest levels of liver aspartate aminotransferase (AST), liver alkaline phosphatase (ALP) and serum malondialdehyde (MDA), and the lowest activities of serum superoxide dismutase (SOD) and catalase (CAT) in the PC group (day 66). The levels of liver ALP were significantly (P<0.05) lower in the probiotic groups compared to the NC and PC groups prior to and after exposure to dietary lead. Serum levels of total protein, albumin, SOD, CAT and glutathione (GSH) were significantly increased in fish fed with both non-encapsulated and microencapsulated probiotics (P<0.05). However, microencapsulated probiotic showed the greatest potential for alleviation of the disturbed activities of intestinal and hepatic enzymes, and improvement of serum biochemical and antioxidant parameters. Our findings suggest that L. delbrueckii subsp. bulgaricus, particularly in the microencapsulated form, can be used as a potential probiotic to protect rainbow trout from dietborne lead toxicity.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献