Sex Dependent Action of Aroclor 1254 on Basal and sGnRHa-Stimulated Secretion of LH from the Pituitary Cells of Common Carp, Cyprinus carpio L.

Author:

Socha Magdalena1,Sokołowska-Mikołajczyk Mirosława2,Chyb Jarosław2,Drąg-Kozak Ewa2,Łuszczek-Trojnar Ewa2

Affiliation:

1. Department of Animal Physiology and Endocrinology , University of Agriculture in Krakow , Al. Mickiewicza 24/28, 30-059 Kraków , Poland

2. Department of Animal Nutrition and Biotechnology, and Fisheries , University of Agriculture in Krakow , Prof. T. Spiczakowa 6, 30-199 Kraków , Poland

Abstract

Abstract Polychlorinated biphenyls (PCBs) affect the hypothalamic-pituitary-gonadal axis in many vertebrates, changing the hormonal regulation of reproduction. To identify one of the possible sites of action of PCBs on gonadotropin release in common carp, the direct effects of Aroclor 1254 on luteinizing hormone (LH) secretion from dispersed pituitary cells were investigated. Pituitary cells were obtained from sexually mature male and female common carp (Cyprinus carpio L.) at the time of natural spawning. The cells were incubated with different concentrations of Aroclor 1254 (5, 10, 50 and 100 ng mL–1 medium) and/or salmon gonadotropin-releasing hormone analogue (sGnRHa) at a concentration of 10−8 M. LH levels were measured in the cultured medium by the ELISA method after 10 hours of cell incubation. Incubation of male pituitary cells in the presence of tested concentrations of Aroclor did not change the basal LH secretion to the media. In the female pituitary cell incubations Aroclor (5, 10 and 100 ng mL–1 medium) caused a significant increase in LH concentrations in comparison to control incubations. In the case of sGnRHastimulated LH secretion in incubations of cells of both sexes, all the concentrations of Aroclor significantly stimulated LH release and potentiated stimulatory effects of sGnRH analogue. These results indicate that endocrine disrupters, such as Aroclor 1254, may affect reproduction in fish, acting also directly on gonadotrophs at the level of the pituitary gland, changing LH secretion.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3