Exploring the biogenic peptide’s potential in combating bacterial zoonosis: application and future prospect
Author:
Tahir Saleha1, Abbas Rao Zahid2, Qamar Warda2, Arshad Muhammad Imran1, Alvi Mughees Aizaz3, Mahmood Muhammad Shahid1, Zaheer Tean2
Affiliation:
1. 1 Institute of Microbiology , University of Agriculture , Faisalabad , Pakistan 2. 2 Department of Parasitology , University of Agriculture , Faisalabad , Pakistan 3. 3 Department of Clinical Medicine and Surgery , University of Agriculture , Faisalabad , Pakistan
Abstract
Abstract
Worldwide, microbial infections have a serious impact because they cause infectious diseases, death, and significant economic losses. Zoonosis is now a major public health issue on a global scale because of the fast expansion of human exploitation of nature and animal husbandry. Notably, in the past 30 years, over 30 novel human infections have been discovered, 75% of which fall under the category of zoonosis. Resistant strains have emerged as a result of improper use of antibiotics and insufficient infection management posing a serious risk to both public health and the global economy. As alternatives, antimicrobial peptides are showing good results. The majority of living things use antibacterial peptides (ABPs) as a key part of their natural defenses against invading infections. These peptides are cationic, amphipathic, and relatively tiny with varied sequences, structures, and lengths. For the delivery of these efficacious biological peptides, nanoparticles are providing opportunities for effective, safe, and viable delivery. An innovative method of treating infectious diseases is demonstrated by nanoparticles and antibacterial peptides. When ABPs are combined with carrier nanoparticles to optimize distribution, their half-life may be increased, allowing for lower dosages and ultimately lower toxicity. For biological applications, ABPs and nanoparticle conjugates have become effective methods, enabling the treatment, prevention of disease, and detection. More than 50 peptide medications have been made available for purchase on the market as of 2018. Around 25 billion USD is spent on peptide medications each year, including ABPs. But still, there is a gap in the distribution of these ABPs as an alternative to synthetic antibiotics. It might be due to the high cost of these goods. Thus, scientists, researchers, and commercializing companies should work together so that these ABPs with a safe delivery system should be available in the market to combat resistant strains of bacteria. In doing so, we draw attention to the significant advancements made in the field as well as the difficulties still encountered in developing imaging species, active therapies, and nano-drug delivery systems that are functionalized with peptides and proteins for clinical use.
Publisher
Walter de Gruyter GmbH
Reference141 articles.
1. Abbas R.Z., Zaman M.A., Sindhu D., Sharif M., Rafique A., Saeed Z., Rehman T., Siddique F., Zaheer T., Khan M.K., Akram M.S., Chattha A.J., Fatima U., Munir T., Ahmad M. (2020). Anthelmintic effects and toxicity analysis of herbal dewormer against the infection of haemonchus contortus and fasciola hepatica in goat. Pak. Vet. J., 40. 2. Ageitos J.M., Sánchez-Pérez A., Calo-Mata P., Villa T.G. (2017). Antimicrobial peptides (AMPs): Ancient compounds that represent novel weapons in the fight against bacteria. Biochem. Pharmacol., 133: 117–138. 3. Agier J., Efenberger M., Brzezińska-Błaszczyk E. (2015). Cathelicidin impact on inflammatory cells. Cent. Eur. J. Immun., 40: 225–235. 4. Ahmad S., Rasheed U., Naz I., Ali S., Ali N., Aziz A. (2022). Antimicrobial resistant pattern of isolates from intensive care unit of tertiary care hospital. Advance. Life Sci., 9: 32–35. 5. Ahmed A., Siman-Tov G., Hall G., Bhalla N., Narayanan A. (2019). Human antimicrobial peptides as therapeutics for viral infections. Viruses, 11: 704.
|
|