Exploring the biogenic peptide’s potential in combating bacterial zoonosis: application and future prospect

Author:

Tahir Saleha1,Abbas Rao Zahid2,Qamar Warda2,Arshad Muhammad Imran1,Alvi Mughees Aizaz3,Mahmood Muhammad Shahid1,Zaheer Tean2

Affiliation:

1. 1 Institute of Microbiology , University of Agriculture , Faisalabad , Pakistan

2. 2 Department of Parasitology , University of Agriculture , Faisalabad , Pakistan

3. 3 Department of Clinical Medicine and Surgery , University of Agriculture , Faisalabad , Pakistan

Abstract

Abstract Worldwide, microbial infections have a serious impact because they cause infectious diseases, death, and significant economic losses. Zoonosis is now a major public health issue on a global scale because of the fast expansion of human exploitation of nature and animal husbandry. Notably, in the past 30 years, over 30 novel human infections have been discovered, 75% of which fall under the category of zoonosis. Resistant strains have emerged as a result of improper use of antibiotics and insufficient infection management posing a serious risk to both public health and the global economy. As alternatives, antimicrobial peptides are showing good results. The majority of living things use antibacterial peptides (ABPs) as a key part of their natural defenses against invading infections. These peptides are cationic, amphipathic, and relatively tiny with varied sequences, structures, and lengths. For the delivery of these efficacious biological peptides, nanoparticles are providing opportunities for effective, safe, and viable delivery. An innovative method of treating infectious diseases is demonstrated by nanoparticles and antibacterial peptides. When ABPs are combined with carrier nanoparticles to optimize distribution, their half-life may be increased, allowing for lower dosages and ultimately lower toxicity. For biological applications, ABPs and nanoparticle conjugates have become effective methods, enabling the treatment, prevention of disease, and detection. More than 50 peptide medications have been made available for purchase on the market as of 2018. Around 25 billion USD is spent on peptide medications each year, including ABPs. But still, there is a gap in the distribution of these ABPs as an alternative to synthetic antibiotics. It might be due to the high cost of these goods. Thus, scientists, researchers, and commercializing companies should work together so that these ABPs with a safe delivery system should be available in the market to combat resistant strains of bacteria. In doing so, we draw attention to the significant advancements made in the field as well as the difficulties still encountered in developing imaging species, active therapies, and nano-drug delivery systems that are functionalized with peptides and proteins for clinical use.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3