Acrylamide-Induced Prenatal Programming of Bone Structure in Mammal Model

Author:

Tomaszewska Ewa1,Dobrowolski Piotr2,Puzio Iwona1,Donaldson Janine3,Muszyński Siemowit4

Affiliation:

1. Department of Animal Physiology, Faculty of Veterinary Medicine , University of Life Sciences in Lublin , Akademicka 12, 20-950 Lublin , Poland

2. Department of Functional Anatomy and Cytobiology , Maria Curie-Sklodowska University , Akademicka 19, 20-033 Lublin , Poland

3. School of Physiology , Faculty of Health Sciences , University of the Witwatersrand , 7 York Road, Parktown, Johannesburg, 2193 , South Africa

4. Department of Biophysics, Faculty of Environmental Biology , University of Life Sciences in Lublin, Akademicka 13 , 20-950 Lublin , Poland

Abstract

Abstract Acrylamide (AA) is a chemical substance with a potentially carcinogenic effect. Its presence in food or animal food arises from its thermal processing. The experiment was conducted to evaluate the effect of AA exposure (3.0 mg/kg. b.w./day) of pregnant dams during the second half of the pregnancy on bone development in offspring. As an model animal, guinea pig was used. While term body weight of newborns was not influenced by maternal AA treatment, shorter bones with reduced bone diaphysis cross-sectional area were observed in experimental group. Numerous negative, offspring sex-dependent effects of maternal AA exposure were observed in femoral epiphysis and metaphysis as well as the articular and growth plate cartilages. These effects resulted from the AA-induced alterations in bone metabolism, as indicated by the changes in the expression of numerous proteins involved in bone development: receptor activator of nuclear factor kappa-Β ligand (RANKL), tissue inhibitor of metalloproteinases 2 (TIMP-2), bone morphogenetic protein 2 (BMP-2), vascular endothelial growth factor (VEGF), and cartilage oligomeric matrix protein (COMP), all of whose expression was measured as well as distribution of immature collagen fibres was determined. Based on the results, it can be concluded that the exposure of pregnant dams to AA negatively affected the structure of compact bone in bone diaphysis, microarchitecture of trabecular bone in metaphysis and epiphysis as well as the structure of the articular and growth plate cartilages in their offspring. The AA-induced bone impairment increased osteoclast differentiation, as observed through the change in the RANKL/OPG ratio, which in turn inhibited osteoblast function by decreasing the expression of other proteins. The data of the present study suggests that maternal AA exposure can result in insufficient bone gain and even bone loss after the birth.

Publisher

Walter de Gruyter GmbH

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3