Effect of high hydrostatic pressure on the in vitro development and molecular quality of transgenic rabbit embryos derived from nano-transfected zygotes

Author:

Dzięgiel Natalia1ORCID,Jura Jacek1ORCID,Samiec Marcin1ORCID

Affiliation:

1. Department of Reproductive Biotechnology and Cryoconservation , National Research Institute of Animal Production , Balice n . Kraków , Poland

Abstract

Abstract The aim of this study was to evaluate the effect of high hydrostatic pressure (HHP) on the in vitro developmental abilities of nano-transfected rabbit zygotes, their transfection efficiency, and the molecular quality of the blastocysts generated. This quality was assessed by estimating the quantitative profiles of Oct4, Casp7, and Bcl2 mRNA transcripts. The nano-transfection efficiencies of zygotes that had been pre-treated with either 20 MPa or 40 MPa of HHP (13.5% and 13.7%, respectively) were insignificantly lower than those found in zygotes not exposed to HHP prior to their nano-transfection (20.1%; P≥0.05). Moreover, applying HHP treatment with the parameters of 20 MPa and 40 MPa followed by the nano-transfection of zygotes brought about an insignificant decrease in the rates of embryos at the blastocyst stage (30.4% and 23.0%, respectively) as compared to the control group of nano-transfected zygotes (40.4%; P≥0.05). Furthermore, analyzing the transcriptional activity of Oct4, Bcl2, and Casp7 genes revealed that HHP enhances the relative abundance (RA) of all mRNA transcripts in blastocysts derived from non-transfected rabbit zygotes. In turn, the augmented RAs found in the pro-apoptotic Casp7 and anti-apoptotic Bcl-2 transcripts confirmed the onset and progression of programmed cell death in blastocysts developed from nano-transfected zygotes that had undergone HHP pre-treatment. The conceptualization based not only on a novel nano-transfection approach used to genetically modify in vivo-fertilized rabbit zygotes but also on their HHP pre-treatment is elaborated here for the first time, with an emphasis on further investigations aimed at producing transgenic rabbit and other mammalian species embryos by somatic cell cloning.

Publisher

Walter de Gruyter GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3