Affiliation:
1. Department of Mathematics College of Arts and Sciences, Shanghai Maritime University, Shanghai, 201306, P. R. China
Abstract
Abstract
The aim of the paper is to investigate the relationship among NMV-algebras, commutative basic algebras and naBL-algebras (i.e., non-associative BL-algebras). First, we introduce the notion of strong NMV-algebra and prove that
(1)a strong NMV-algebra is a residuated l-groupoid (i.e., a bounded integral commutative residuated lattice-ordered groupoid)(2)a residuated l-groupoid is commutative basic algebra if and only if it is a strong NMV-algebra.
Secondly, we introduce the notion of NMV-filter and prove that a residuated l-groupoid is a strong NMV-algebra (commutative basic algebra) if and only if its every filter is an NMV-filter. Finally, we introduce the notion of weak naBL-algebra, and show that any strong NMV-algebra (commutative basic algebra) is weak naBL-algebra and give some counterexamples.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献