Affiliation:
1. Mathematical Institute, Slovak Academy of Sciences, Štefánikova 49, SK-814 73, Bratislava, Slovakia
Abstract
Abstract
In this paper, a two-species nonautonomous Lotka-Volterra model of population growth in a polluted environment is proposed. Global asymptotic behaviour of this model by constructing suitable bounded functions has been investigated. It is proved that each population for competition, predation and cooperation systems respectively is uniformly persistent (permanent) under appropriate conditions. Sufficient conditions are derived to confirm that if each of competition, predation and cooperation systems respectively admits a positive periodic solution, then it is globally asymptotically stable.
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献