Affiliation:
1. Department of Mathematics and Computer Science, Wesleyan University, Middletown, CT, 06459-0128, USA
2. Department of Mathematics, University of Florida, Box 118105, Gainesville, FL, 32611-8105, USA
Abstract
Abstract
Hölder categories are invented to provide an axiomatic foundation for the study of categories of archimedean lattice-ordered algebraic structures. The basis of such a study is Hölder’s Theorem (1908), stating that the archimedean totally ordered groups are precisely the subgroups of the additive real numbers ℝ with the usual addition and ordering, which remains the single most consequential result in the studies of lattice-ordered algebraic systems since Birkhoff and Fuchs to the present.
This study originated with interest in W*, the category of all archimedean lattice-ordered groups with a designated strong order unit, and the ℓ-homomorphisms which preserve those units, and, more precisely, with interest in the epireflections on W*. In the course of this study, certain abstract notions jumped to the forefront. Two of these, in particular, seem to have been mostly overlooked; some notion of simplicity appears to be essential to any kind of categorical study of W*, as are the quasi-initial objects in a category. Once these two notions have been brought into the conversation, a Hölder category may then be defined as one which is complete, well powered, and in which
(a) the initial object I is simple, and
(b) there is a simple quasi-initial coseparator R.
In this framework it is shown that the epireflective hull of R is the least monoreflective class. And, when I = R — that is, the initial element is simple and a coseparator — a theorem of Bezhanishvili, Morandi, and Olberding, for bounded archimedean f-algebras with identity, can be be generalized, as follows: for any Hölder category subject to the stipulation that the initial object is a simple coseparator, every uniformly nontrivial reflection — meaning that the reflection of each non-terminal object is non-terminal — is a monoreflection.
Also shown here is the fact that the atoms in the class of epireflective classes are the epireflective hulls of the simple quasi-initial objects. From this observation one easily deduces a converse to the result of Bezhanishvili, Morandi, and Olberding: if in a Hölder category every epireflection is a monoreflection, then the initial object is a coseparator.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献