A comparison of the convergence rates of Hestenes’ conjugate Gram-Schmidt method without derivatives with other numerical optimization methods

Author:

Raihen Md Nurul1

Affiliation:

1. Fontbonne University , Department of Mathematics and Computer Science , Saint Louis , Missouri , , USA

Abstract

Abstract This article describes an approach known as the conjugate Gram-Schmidt method for estimating gradients and Hessian using function evaluations and difference quotients, and uses the Gram-Schmidt conjugate direction algorithm to minimize functions and compares it to other techniques for solving ∇f = 0. Comparable minimization algorithms are also used to demonstrate convergence rates using quotient and root convergence factors, as described by Ortega and Rheinbolt to determine the optimal minimization technique to obtain similar results to the Newton method, between the Gram-Schmidt approach and other minimizing approaches. A survey of the existing literature in order to compare Hestenes’ Gram-Schmidt conjugate direction approach without derivative to other minimization methods is conducted and the further analytical and computational details are provided.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3