Effect of Chemical Reaction on Mixed Convective Nanofluid Flow on a Vertical Plate with Uniform Heat and Mass Fluxes

Author:

Mondal H.1,Goqo S.P1,Sibanda P.1,De P.2

Affiliation:

1. School of Mathematics, Statistics and Computer Science , University of KwaZula-Natal , Private Bag X01, Scottsvile, Pietermaritzburg - 3209 , South Africa

2. Department of Mathematics, School of Advanced Sciences , VIT University , Chennai Campus, Chennai - 600127 , Tamil Nadu, India

Abstract

Abstract The purpose of this paper is to consider a two dimensional free convective flow of a nanofluid due to the combined effects of thermal and mass diffusion in the presence of a chemical reaction of first order. The objective of the present investigation is to analyze the free convective flow in the presence of prescribed wall heat flux and mass flux condition. The governing equations of the linear momentum, energy equation and concentration are obtained in a dimensionless form by introducing a suitable group of similarity transformations. The transformed coupled non-linear ordinary differential equations are solved numerically by using appropriate boundary conditions for the various values of physical parameters. Computations are performed for a wide range of values of the various governing flow parameters of the velocity, temperature and species concentration profiles and results are presented graphically. Numerical results for the skin friction coefficient and local Nusselt number are also presented and analyzed in detail. The obtained results are compared with previously published work and are found to be in excellent agreement. The results are a very useful source of information for researchers on the subject of a free convective flow of a nanofluid. This paper illustrates chemical reaction effects on free convective flow of a nanofluid from a vertical plate with uniform heat and mass fluxes.

Publisher

Walter de Gruyter GmbH

Subject

Fluid Flow and Transfer Processes,Transportation,Civil and Structural Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3