Numerical Study on Thermal Performance of Water Flow in a Twisted Duct Heat Exchanger

Author:

Rashed Musaab K.1,Jehhef Kadhum Audaa1,Badawy Faris Ali1

Affiliation:

1. Middle Technical University , Institute of Technology , Baghdad / Iraq .

Abstract

Abstract This paper presents a numerical study of heat transfer through a downstream annulus using water as the working fluid within the laminar flow region. The annulus consisted of an outer twisted square duct and an inner circular pipe. A three-dimensional formulation was used to solve the Navier-Stokes equations numerically for the laminar flow system with a low Reynolds number. Three parameters were used in the numerical simulation: the length of the twisted square (a: 6.6, 8.2 10.2, 12.6 mm) the inner diameter of the inner circular pipe (d: 19, 21, 23 and 25 mm); and the twist angle (θ: 0° (smooth), 45°, 60°, and 90°). Numerical calculations were conducted on sixteen twisted square duct heat exchangers, with water flowing within a Reynolds number range of 2201100. The results were illustrated as a profile of the thermal enhancement factor, the friction factor and the Nusselt number. The results show that the twisted outer duct of the heat exchanger can create a swirl flow along the length of the heat exchanger. It also caused a boundary layer separation-reattachment on the wall of the inner pipe. Moreover, an increase in the twist angle increased the Nusselt number by 20 %, and the friction factor was also increased as the annular gap of the heat exchanger decreased.

Publisher

Walter de Gruyter GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3