Heat Transfer By Natural Convection from a Heated Square Inner Cylinder to Its Elliptical Outer Enclosure Utilizing Nanofluids

Author:

Bouras Abdelkrim1,Taloub Djedid2,Driss Zied3,Debka Siham4

Affiliation:

1. Department of Physics, Faculty of Sciences , University Mohamed Boudiaf of M’sila , Algeria

2. Department of Physics, Faculty of Sciences , University Mohamed Boudiaf of M’sila , Algeria ; Laboratory of Materials Physics and its Applications , University Mohamed Boudiaf of M’sila , Algeria

3. Department of Mechanics , Electromechanical Systems Laboratory , University of Sfax, (ENIS) , Tunisia

4. Department of Physics , Faculty of Sciences University Mohamed Boudiaf of M’sila , Algeria

Abstract

Abstract In this paper a numerical study of natural convection of stationary laminar heat transfers in a horizontal ring between a heated square inner cylinder and a cold elliptical outer cylinder is presented. A Cu-water nanofluid flows through this annular space. Different values of the Rayleigh number and volume fraction of nanoparticles are studied. The system of equations governing the problem was solved numerically by the fluent calculation code based on the finite volume method and on the Boussinesq approximation. The interior and exterior surfaces are kept at constant temperature. The study is carried out for Rayleigh numbers ranging from 103 to 105 . We have studied the effects of different Rayleigh numbers and volume fraction of nanoparticles on natural convection. The results are presented as isotherms, isocurrents, and local and mean Nusselt numbers. The aim of this study is to study the influence of the thermal Rayleigh number and volume fraction of nanoparticles on the heat transfer rate.

Publisher

Walter de Gruyter GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3