Study on Harmonic Analysis of Functionally Graded Plates Using Fem

Author:

Sharma A.K.1,Sharma P.2,Chauhan P.S.3,Bhadoria S.S.4

Affiliation:

1. Rajkiya Engineering College , Mainpuri , India - 205119

2. Madhav Institute of Technology and Science , Gwalior , India

3. IPS- College of Technology and Management , Gwalior , India

4. Dr. B.R. Ambedkar National Institute of Technology , Jalandhar , India

Abstract

Abstract This paper presents the harmonic and vibration analysis of functionally graded plates using the finite element method. Initially, the plates are assumed isotropic and the material properties of it are assumed to vary continuously through their thickness direction according to a power-law distribution of the volume fractions of the plate constituents. The four noded shell element is used to analyse the functionally graded plates. Four functionally graded plates-Al/Al2O3, Al/ZrO2, Ti–6Al–4V/Aluminium oxide, and SUS304/Si3N4 are considered in the study, and their results are obtained so that the right choice can be made in applications in high temperature environment and in reducing the vibration amplitudes in applications such as aircrafts, rockets, missiles, etc. Numerical results for the natural frequency and harmonic response amplitude are presented. Results are compared and validated with available results in the literature. Effects of boundary conditions, material and damping on natural frequency and harmonic response of the functionally graded plates are also investigated.

Publisher

Walter de Gruyter GmbH

Subject

Fluid Flow and Transfer Processes,Transportation,Civil and Structural Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3