Hydrodynamic Forces on a Submerged Horizontal Circular Cylinder in Uniform Finite Depth Ice Covered Water

Author:

Sahu M.1,Das D.1

Affiliation:

1. Diamond Harbour Women’s University , Department of Mathematics , Diamond Harbour, Road, Sarisha, Pin-743368 , India

Abstract

Abstract Hydrodynamic forces on a submerged cylinder in uniform finite depth ice-covered water is formulated by using the method of multipoles, the ice-cover being modelled as an elastic plate of very small thickness. The forces (vertical and horizontal) are obtained analytically as well as numerically and depicted graphically for various values of flexural rigidity of the ice-cover to show the effect of its presence. When the flexural rigidity and surface density of the ice-cover are taken to be zero, then the curves for the forces almost coincide with the curves for the case of uniform finite depth water with free surface.

Publisher

Walter de Gruyter GmbH

Subject

Fluid Flow and Transfer Processes,Transportation,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Review of Ice Deformation and Breaking Under Flexural-Gravity Waves Induced by Moving Loads;Journal of Marine Science and Application;2024-06-25

2. Translating and pulsating Green function with an ice cover;Journal of Engineering Mathematics;2022-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3