Numerical Simulation Evaluation of Fire Spreading in a Building Using Fire Dynamics Simulator (FDS)

Author:

Enaru I.1,Chereches N.-C.1,Hudișteanu S.-V.1,Țurcanu E.-F.1,Ancas Ana Diana1,Verdeș Marina1,Popovici C.-G.1,Ciocan V.1

Affiliation:

1. 1 Technical University “Ghe. Asachi” of Iasi, Faculty of Civil Engineering and Building Servicies , Department Building Sevicies , D. Mangeron 67 str., 700050 , Romania

Abstract

Abstract The 3D model of a building was built to analyze the scene of a fire with reference to the real situation. The process of evolution of a fire was simulated with FDS. The evolution time of the fire, the degree of danger, the temperature as well as the visibility was analyzed. Architectural solutions that could be considered for the prevention and evolution of fire in the presented situations were also analyzed. The results of the simulations in the proposed scenarios showed that solutions could be found to prevent the spread of fire. The results of the study provide a real base for improving the evacuation conditions and limiting the damage caused by fire in single-family buildings.

Publisher

Walter de Gruyter GmbH

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3