Punching of Concrete Slabs Reinforced by Recycling Waste

Author:

Hassani K.1,Atlaoui D.2,Bouafia Y.2

Affiliation:

1. Department of Civil Engineering, Faculty of Construction Engineering , University ‘Mouloud Mammeri’ of Tizi-Ouzou , Tizi Ouzou , Algeria

2. Department of Civil Engineering, Faculty of Construction Engineering , Laboratory of Modelling of Materials and Structures in Civil Engineering (L2MSGC), University ‘Mouloud Mammeri’ of Tizi-Ouzou , Tizi Ouzou , Algeria

Abstract

Abstract This study aims to experimentally evaluate the mechanical properties of concrete slabs reinforced with two types of fibers: metallic fibers (MF) and grids based on polypropylene fibers (PPG). The metallic fibers, sourced from machining waste of steel parts, are randomly distributed in the concrete, while the polypropylene fibers are arranged in grids. The investigation includes punching tests conducted on slabs measuring [25x50x7] cm³, as well as compression tests on cylinders with a diameter of Ø16 cm and a height of H32 cm. Mechanical resistance and tearing characteristics of the fibers were also assessed. The concrete’s composition was determined using the experimental “Dreux-Gorisse” method. Five different metal fiber contents (MF) were studied (W=0.2%, W=0.4%, W=0.6%, W=0.8%, and W=1%), alongside a control concrete sample (BT) with no fibers (W=0%) having the same composition as the matrix. Two variants of grids based on small-mesh polypropylene fibers (PPG/SM) and large-mesh (PPG/LM) configurations were considered. The comparative analysis of the results highlights that, at a fiber content of W=0.8%, metallic fibers (MF) enhance both resistance and rigidity more effectively than polypropylene fibers in small meshes (PPG/SM) and large meshes (PPG/LM), thereby limiting the formation of puncturing cracks.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3