Performance Of Static Positioning For Medium Distances Based On Data From A Virtual Reference Station And ASG-PL Network

Author:

Bakuła M.

Abstract

Performance Of Static Positioning For Medium Distances Based On Data From A Virtual Reference Station And ASG-PL Network The use of a network of reference stations instead of a single reference station allows the modelling of some systematic errors in a region and allows a user to increase the distance between the rover receiver and reference stations. In some countries, GPS reference stations exist and GPS observations are available for users in real-time mode and in postprocessing. Observations from several GPS reference stations in a regional network enable modelling spatially-correlated errors and their modelling on an epoch-by-epoch and satellite-by-satellite basis. As a result, observations of a virtual reference station can be created at a rover's approximate position and its observations can be used in the precise baseline positioning of the rover. This paper presents the performance of the static positioning of a rover station, its quality and reliability for two different baselines. Single-baseline and network static solutions are presented and compared. Network solutions are based on data from a virtual reference station (VRS) obtained by the Wasoft/Virtuall software. In both cases, the same strategy of ambiguity resolution was used. These approaches have been tested with the use of 24-hour GPS data from the Polish Active Geodetic Network (ASG-PL). The data from three reference stations with medium-range separation were used in the process of generating VRS data. GPS data of the rover station were divided into 20, 10 and 5-min. sessions with a sampling interval of 5 sec. Practical calculations and analyses of horizontal and vertical accuracy of coordinates clearly show the improvement of static positioning in terms of time observation span and ambiguity reliability.

Publisher

Walter de Gruyter GmbH

Reference2 articles.

1. Ashtech and Spectra Precision Terrasat GmbH Germany, (1998). Ashtech Office Suite for Survey, User's Manual, USA.

2. Raquet J. (1999). Development of a Method for Kinematic GPS Carrier Phase Ambiguity Resolution Using Multiple Reference Receiver, UCGE No 20116, (PhD thesis).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3