Computability of sets in Euclidean space

Author:

Potgieter Petrus H1ORCID

Affiliation:

1. Department of Decision Sciences , University of South Africa , Pretoria , South Africa

Abstract

Abstract We consider several concepts of computability (recursiveness) for sets in Euclidean space. A list of four ideal properties for such sets is proposed and it is shown in a very elementary way that no notion can satisfy all four desiderata. Most notions introduced here are essentially based on separability of ℝ n and this is natural when thinking about operations on an actual digital computer where, in fact, rational numbers are the basis of everything. We enumerate some properties of some naïve but practical notions of recursive sets and contrast these with others, including the widely used and accepted notion of computable set developed by Weihrauch, Brattka and others which is based on the “Polish school” notion of a computable real function. We also offer a conjecture about the Mandelbrot set.

Publisher

Walter de Gruyter GmbH

Reference18 articles.

1. [1] Ilona Bereczki. Nem elemi rekurzív függvény létezése. In Az Első Magyar Matematikai Kongresszus közleményei, Magyar Matematikai Kongresszus közleményei, pages 409–417, 1952. cited in [14] and also reviewed in Journal of Symbolic Logic.

2. [2] Lenore Blum, Felipe Cucker, Michael Shub, and Steve Smale. Complexity and real computation. Springer-Verlag, New York, 1998. With a foreword by Richard M. Karp.10.1007/978-1-4612-0701-6

3. [3] Vasco Brattka. The emperor’s new recursiveness: the epigraph of the exponential function in two models of computability, pages 63–72. World Sci. Publ., River Edge, NJ, 2003.10.1142/9789812704979_0005

4. [4] Vasco Brattka and Klaus Weihrauch. Computability on subsets of Euclidean space. I. Closed and compact subsets. Theoretical Computer Science, 219:65–93, 1999.10.1016/S0304-3975(98)00284-9

5. [5] Antonin Callard and Mathieu Hoyrup. Descriptive complexity on non-Polish spaces. In STACS 2020, volume 154 of 37th Symposium on Theoretical Aspects of Computer Science, page 16, 2020.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3