Numerical study of deformations induced by ac electric field in insulating flexoelectric nematic layers

Author:

Derfel G.,Buczkowska M.

Abstract

AbstractThe influence of the frequency f of applied ac electric field on the time dependence of electric field induced deformations of homeotropic nematic layers is studied numerically. Three kinds of nematic liquid crystals were considered: non-flexoelectric nematic with negative dielectric anisotropy, Δɛ < 0dielectrically compensated nematic (Δɛ = 0) possessing flexoelectric properties determined by the positive sum of flexoelectric coefficients e = e11 + e33 > 0nematic characterised by both Δɛ < 0 and e > 0.It was found that at sufficiently low frequencies, the deformations varied with time. The deformations of purely dielectric nature had the period 1/(2f). When the frequency was increased, a stationary director distribution was achieved, determined by the rms value of the ac voltage. The time period of purely flexoelectric distortions was equal to 1/f. There was a well defined cut-off frequency above which these deformations vanished. In the case of dielectrically anisotropic and flexoelectric nematic, the flexoelectric contribution vanished above a critical frequency and the deformation of dielectric nature stabilized at high frequencies.

Publisher

Elsevier BV

Subject

Electrical and Electronic Engineering,Radiation,General Materials Science

Reference11 articles.

1. Numerical in vestigation of influence of ionic space charge and flexo electric polarization on measurement of elastic constans in nematic liquid crystals;Buczkowska;Electron Rev,2009

2. Influence of ionic transport on deformations of homeotropic nematic layers with positive flexoelectric coefficients;Buczkowska;Cryst,2005

3. Role of ions mobility in flexoelectric deformations of conducting homeotropic ne matic layers Physics;Buczkowska;Sci Bull Tech,2008

4. Dielectric alignment in an electri cally conducting nematic liquid crystal;Gruler;Appl Phys,1975

5. Analysis of deformations of flexoelectric homeotropic liquid crystal layers witch various anchoring strengths;Buczkowska;Electron Rev,2011

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3