Mixture model and Markov random field-based remote sensing image unsupervised clustering method

Author:

Hou Y.,Yang Y.,Rao N.,Lun X.,Lan J.

Abstract

AbstractIn this paper, a novel method for remote sensing image clustering based on mixture model and Markov random field (MRF) is proposed. A remote sensing image can be considered as Gaussian mixture model. The image clustering result corresponding to the image label field is a MRF. So, the image clustering procedure is transformed to a maximum a posterior (MAP) problem by Bayesian theorem. The intensity difference and the spatial distance between the two pixels in the same clique are introduced into the traditional MRF potential function. The iterative conditional model (ICM) is employed to find the solution of MAP. We use the max entropy criterion to choose the optimal clustering number. In the experiments, the method is compared with the traditional MRF clustering method using ICM and simulated annealing (SA). The results show that this method is better than the traditional MRF model both in noise filtering and miss-classification ratio.

Publisher

Elsevier BV

Subject

Electrical and Electronic Engineering,Radiation,General Materials Science

Reference21 articles.

1. On cluster validity index for estimation of the optimal number of fuzzy clusters Pat tern;Kim;Recogn,2004

2. Unsupervised multiscale segmentation of colour images;Jung;Pattern Recogn Lett,2007

3. Random germs and sto chastic watershed for unsupervised multispectral image seg mentation th on Knowledge Based & In telligent Engineering Systems Bournemouth;Noyel;Proc Int Conf Information,2006

4. Cluster ensembles acknowledge re use framework for combining multiple partitions;Strehl;Learn Res,2002

5. Classification of multisource remote sensing imagery using a genetic algorithm and Markov random fields;Tso;IEEE Geosci Remote,1999

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3