Effect of bias in ferroelectric-antiferroelectric relaxation

Author:

Geday M.,Medialdea D.,Cerrolaza B.,Bennis N.,Quintana X.,Otón J.

Abstract

AbstractThe ferroelectric-antiferroelectric transition in greyscale generation of antiferroelectric liquid crystal displays (AFLC) is a heterogeneous process. The process has been described as the growth of finger-like domains [1]. We have previously studied the ferroelectric-antiferroelectric phase transition, relaxation that follows the data pulse in surface stabilized asymmetric antiferroelectric liquid crystal displays using biasless video frequency waveforms [2]. This relaxation involves an intensity decay of the light transmitted by a pixel and depends on several parameters such as surface stabilization, rotational viscosity of the AFLC, magnitude of the data pulse, and bias voltage.The usual multiplexed driving of AFLC displays leads to long-term stabilisation of the grey levels induced by the data pulses within the selection time. However, depending on the bias level, alternative greyscale mechanisms may be obtained by allowing the grey levels to decay during the frametime. These greyscales may be advantageous in some instances since they improve the dynamic response of the AFLC device and reduce the reset time of the waveform.In this study we extend the previous work to include the effect of bias. We present the measured data, in terms of growth pattern and speed and present an extension of the previously model on order to explain the results.

Publisher

Elsevier BV

Subject

Electrical and Electronic Engineering,Radiation,General Materials Science

Reference2 articles.

1. Statistical model of greyscale in antiferroelectric liquid crystal cells;Sabater;Cryst,1996

2. Mechanisms of switching in an antiferroelectric liq uid crystal device revealed by time resolved X ray scatter ing;Gleeson;Cryst,2006

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3