Molecular theoretic study of Freedericksz transition. Symmetry breaking of oblique axial order

Author:

Kio M.,Torikai M.,Yamashita M.

Abstract

AbstractFreedericksz transition, which is usually analyzed by an elastic theory, is studied on the basis of statistical mechanical ground, where nematics with positive dielectric anisotropy in homogeneous anchoring cell is exposed to an electric field in the direction of wall normal. In low temperature region, an oblique axial symmetry breaking occurs, which is nothing but the Freedericksz transition. In high temperature and high field region, biaxial nematic phase with principal axis parallel to the field direction at interior area of the system is proved to appear. A phase diagram on the field versus temperature plane is obtained and compared with the one at a bulk with common biaxial symmetry, where both of electric and magnetic fields are applied in directions perpendicular to each other. In the latter, no symmetry breaking occurs, in contrast with the former case above-mentioned, and the reason why this difference occurs is elucidated.

Publisher

Elsevier BV

Subject

Electrical and Electronic Engineering,Radiation,General Materials Science

Reference22 articles.

1. Ordered phases of a liquid of biaxial particles;Straley;Phys Rev,1974

2. Phase diagram and orientational order in a biaxial lattice model : A Monte Carlo study;Biscarini;Phys Rev Lett,1995

3. Phase transition in surface aligned nematic films;Sheng;Phys Rev Lett,1976

4. Equilibrium structures and pretr ansitional fluctuations in a very thin hybrid nematic film;Sarlah;Phys Rev,1999

5. Orientational transitions in a nematic liquid crystal con fined by competing surfaces;Rodriguez Ponce;Phys Rev,2001

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3