Spiral resonator manufactured on AlN ceramics to filter the coupled wave between patch antennas

Author:

Koziol P.,Gorski P.,Antonczak A.,Kabacik P.,Abramski K.

Abstract

AbstractThe objective of this paper was to present an alternative technique of manufacturing the unit cells of spiral-shaped resonators (SR) on the aluminium nitride (AlN) ceramics. In this technique the AlN plane surface is irradiated by the Yb:glass medium-power laser (1.06 µm). As a result of the irradiation by a focused laser beam (a laser beam power up to 20 W), the rupture of the aluminium and nitrogen physical bonds occurs. Under such circumstances the conductive aluminium “paths” are formed on the originally insulating ceramic surface. Upon obtaining low ohmic conductive paths, this method makes for the feasible manufacturing of metamaterial structures. In carried out studies, the usage of such structures to suppress the coupling between pairs of patch antennas has been examined. The improvement of the mutual coupling at the level of 10 dB has been obtained. One of the advantages of the demonstrated method is a possibility to perform the selective and direct metallization of the AlN ceramics surface without using any mask as opposed to photolithography. It greatly reduces the implementation time of the projected metamaterial structures.

Publisher

Elsevier BV

Subject

Electrical and Electronic Engineering,Radiation,General Materials Science

Reference25 articles.

1. Low profile dipole antenna design using square SRRs artificial ground plane European Wire less;Taher Al Nuaimi;Conf,2010

2. Ex tremely low frequency plasmons in metallic mesostructu res;Pendry;Phys Rev Lett,1996

3. es Unified homogenization theory for magnetoinductive and electromagnetic waves in split ring metamaterials;Baena;Phys Rev A,2008

4. Sub diffraction limited interference photolithography with metamaterials;Xu;Optics Express,2008

5. Marque s Bulk metamaterials made of resonant rings;Jelinek;Proc IEEE,2011

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3