Modeling and simulation of free radical polymerization of styrene under semibatch reactor conditions

Author:

Curteanu Silvia1

Affiliation:

1. 1Department of Chemical Engineering, Technical University “Gh. Asachi”, IASI, B-dul D. Mangeron No. 71A, 6600 IASI, Romania

Abstract

AbstractThe first part of this approach is concerned with the elaboration of a radical polymerization model of styrenne, based on a kinetic diagram that includes chemical and thermal initiation, propagation, termination by recombination and chain transfer to the monomer. Furthermore, volume contraction during polymerization is considered, as well as the gel and glass effects. The mathematical formalism that describes the model in terms of moments is explored in detail. The model was then used to predict the changes in monomer conversion and molecular weight after intermediate addition of initiator and monomer. The results of this operation are dependent on the conditions of the reaction mass, quantity, and moment of substance addition. Therefore, the simulations were performed at different times with respect to the gel effect; before, during and after this phenomenon, and also with respect to different temperatures and initiators. Increasing the initiator concentration before the gel effect leads to an earlier appearance of the phenomenon and to a decrease in molecular weight. The ratio $$\bar M_w /\bar M_n $$ reveals a polydispersity index smaller for the intermediate addition of initiator. No significant changes take place during or after the gel effect. If along with the initiator, unreacted monomver (used to dissolve the initiator) enters the reactor, a small dip in conversion is observed. The general conclusion of this paper reveals the intermediate addition of initiator as a method to control polymer properties and to prevent the “dead-end” polymerization of styrene.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,General Chemistry

Reference9 articles.

1. D.S. Achilias and C. Kiparissides: “Development of a General Mathematical Framework for Modeling Diffusion-Controled Free Radical Polymerization Reactions”, Macromolecules, Vol. 25, (1992), pp. 3739–3750.

2. R.G. Gilbert, J.F. Anstey, N. Subramanian, M.J. Monteiro: “Emulsion Polymerization as a novel tool in controlled free-radical polymerization”, Polym. Prepr., Vol. 40, (1999), pp. 297–298.

3. A. Sirohi and K. Ravindranath: “Modeling of Ionic Polymerization Processes: Styrene and Butadiene”, AIChE, Spring 99 Meeting, Houston, 1999.

4. K.J. Kim: Modeling and Control of Continuous Free Radical Polymerization Reactors, Thesis (PhD), University of Maryland, 1991.

5. S. Curteanu, V. Bulacovschi, R. Diaconescu: “Modeling of Free Radical Polymerization of Styrene Using a Binary Mixture of Initiarors”, Proc. Rom. Acad., Vol. 3, (2001), pp. 207–213.

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3