In Vitro Effects of Silver Nanoparticles on Pathogenic Bacteria and on Metabolic Activity and Viability of Human Mesenchymal Stem Cells

Author:

Ptasiewicz Maja1,Chałas Renata1,Idaszek Joanna2,Maksymiuk Paweł1,Kister Mateusz3,Kister Karolina A.4,Kurzydłowski Krzysztof J.5,Magryś Agnieszka6

Affiliation:

1. Department of Oral Medicine , Medical University of Lublin , Lublin , Poland

2. Faculty of Materials Science and Engineering , Warsaw University of Technology , Warsaw , Poland

3. Chair and Clinic of Maxillofacial Surgery , Medical University of Lublin , Lublin , Poland

4. Private Practice , New York , USA

5. Faculty of Mechanical Engineering , Białystok University of Technology , Białystok , Poland

6. Chair and Department of Medical Microbiology , Medical University of Lublin , Lublin , Poland

Abstract

Abstract The rapid development of nanotechnology has led to the use of silver nanoparticles (Ag-NPs) in various biomedical fields. However, the effect of Ag-NPs on human mesenchymal stem cells (hMSCs) is not fully understood. Moreover, too frequent an exposure to products containing nanosilver in sublethal amounts raises widespread concerns that it will lead to the development of silver-resistant microorganisms. Therefore, this study aimed to evaluate the mechanism of action of Ag-NPs on hMSCs by analyzing the cellular uptake of Ag-NPs by the cells and its effect on their viability and to assess antimicrobial activity of Ag-NPs against emerging bacterial strains, including multidrug-resistant pathogens. For metabolic activity and viability evaluation, hMSCs were incubated with different concentrations of Ag-NPs (14 μg/mL, 7 μg/mL, and 3.5 μg/mL) for 10 min., 1 h and 24 h and subsequently analyzed for their viability by live-dead staining and metabolic activity by the MTS assay. The effect of Ag-NPs on bacterial pathogens was studied by determining their minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). In conclusion, it was observed that exposure of hMSCs to Ag-NPs of size <10 nm has no cytotoxic effect on the metabolic activity of the cells at the concentration of 3.5 μg/mL, with minimal cytotoxic effect being observed at the concentration of 14 μg/mL after 24 h of incubation. Our findings also confirmed that Ag-NPs at the concentration of 4 μg/mL are effective broad-spectrum bactericidal agents, regardless of the antibiotic-resistance mechanism present in bacteria.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3