The Temperature Field Effect on Dynamic Stability Response of Three-layered Annular Plates for Different Ratios of Imperfection

Author:

Pawlus Dorota1

Affiliation:

1. Faculty of Mechanical Engineering and Computer Science , University of Bielsko-Biala Willowa 2 , Bielsko-Biala , Poland

Abstract

Abstract The paper presents the temperature field effect on the dynamic stability problem of plates with imperfection. The main objective is to conduct numerical investigations which show the relations between the imperfection ratio and plate dynamic response in a thermal environment. The plate is composed of three layers: thin facings and a thicker core. The plate can be loaded mechanically and thermally or only thermally. The facings are mechanically compressed with the forces acting in a plane. The temperature field model is defined by the temperature difference, which occurs between the plate edges. Two plate models are examined as follows: built using the approximation methods – orthogonalization and finite differences – and composed of finite elements. The analytical and numerical solution procedure is the main one, which is the proposal to perform the problem analysis. The plate reaction is described by the obtained values of the critical temperature differences for plates loaded only thermally and by the critical mechanical loads and the corresponding temperature differences for plates loaded mechanically and subjected to the uncoupled temperature field. The effect of the plate imperfection ratio under time-dependent loads is shown by numerous observations and results, which are shown graphically. The importance of the imperfection ratio on the plate's dynamic stability response in complex loading conditions is studied.

Publisher

Walter de Gruyter GmbH

Subject

Computers in Earth Sciences,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3